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Abstract-—The problem of radiant cooling of a fluid in laminar flow through a tube was described by a
nonlinear integral equation, and an approximate solution obtained in terms of the Licuville-Neumann
series. Results were also obtained by an exact iterative numerical solution. Local Nusselt numbers are
presented as a function of dimensionless distance, x = Z/Re Pr R, and a dimensionless parameter, 2 =

¢aT3/k. An empirical equation,

Nufo, x) = (0928 — 0023 In a)Nu(x)

where Nu, = Nusselt number for the constant heat flux case, was found to give results accurate to within
+2 per cent for the ranges of variables of interest.

NOMENCLATURE
a, b, empirical constants in equation (17);
C,, eigenconstants for constant heat-flux
problem;
k, thermal conductivity of fluid;
Nu, Nusselt number;
Pe, Péclet number;
Pr, Prandtl number;
@,  heatfluxatr = R;
R,  radius of tube;
Re, Reynolds number;
R,, eigenfunctions for constant heat flux

problem, at r = R;
r, radial coordinate;
,  absolute temperature;
velocity at tube center line;
dimensioniess distance, = Z/{Re Pr R);
. longitudinal coordinate.

Greek symbols
«,  dimensionless parameter eo T3R/k;

B, eigenvalues for constant heat-flux prob-
lem;

€, emissivity of tube wall;

2, density of fluid;

1 This work was performed under the auspices of the U.S.
Atomic Energy Commission.
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o, Stefan—Boltzmann constant ;
1, dimensionless temperature, = T/T,.
Subscripts
b, fluid bulk;
it at entrance (Z = 0};
g,  constant heat flux case;
w, atwall(r = R);
¥, arbitrary base temperature for equa-
tion (11).
INTRODUCTION

Tue proBLEMOf heat transfer with laminar flow
in a tube has long been of interest to investigators
and a number of solutions have been published
dealing with a variety of boundary conditions.
Those solutions which involve prescribed tem-
perature boundary conditions were well re-
viewed by Tribus and Klein [1]. Solutions which
involve prescribed heat-flux boundary condi-
tions include the well-known work of Siegel,
Sparrow, and Hallman [2]. A third class of
problems, in which neither the wall temperature
nor the wall heat flux is prescribed per se but
instead the heat flux is prescribed as a function of
the local wall temperature, has received much
less attention. This is a more difficult problem in
that the heat-transfer equation now involves the
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unknown variable (either temperature or heat
flux) in an implicit rather than explicit form.
Sideman et al. [3] and Stein [4] recently treated
problems of this class. Of special interest is the
problem of radiant cooling at the boundary wall,
where the wall heat flux is proportional to the
fourth power of the local wall temperature. This
problem has become increasingly important with
the advent of such high temperature systems as
radiators in space power systems, high tem-
perature liquid metal facilities, and high temper-
ature gas flow systems. No analytical or
numerical solution for this problem has been
published to date.

ANALYSIS AND APPROXIMATE SOLUTION

Consider a flud with constant physical pro-
perties in non-dissipative, laminar flow through
a round tube of radius R. Heat transfer at the
wall starts at axial position Z = 0 and is pro-
portional to T4(2) for Z > 0. It is assumed that
axial conduction is negligible and that at Z = 0,

the fluid enters with a fully established laminar
velocity profile and with a uniform temperature,
Ts. The governing heat-transfer equation for

Z = 0is then
m\*1oT *T 10T
U1 —[=) |55 =k| 25+ -25
p '"[ (R) ]62 [6r2 * r 6r] ()

and the initial and boundary conditions are
ForZz<0, T=T,

ForZ 20, k FI:, = Q(2)
or r=R

= —ecTy(Z) (3)

oT
khﬂﬂo=u ()

Since equation (1) is linear, the solution can be
obtained by superposition of the constant heat
flux solution for infinitesimal changes in heat
flux. The effect of a step increase in heat flux at
Z' of magnitude Q(Z') is known to be [2]:

k Re PrR

R zZ-7
Tw,q(za Z’) - 7;) = —{%% + 4(———)

< (Z-2) ,
-+ “Z:‘ C,,R,, exp [— ﬂs m]}Q(Z ) (5)

Applying Duhamel’s superposition theorem 5] to obtain the solution for the case of a constantly

changing heat flux,

0T, AZ,Z)) ..,
2 -T= F Q(Z')_r'—g‘z-——)dz
;Z 4 Z-2)
Tk Hm B HZ, C.R,fy exp l:‘“ fm}}Q(Z') dz'. (6)

[

Combining with boundary condition (3) and writing in terms of dimensionless variables,
) =1— o[ (4= Y CRBexp[~Fx — x)]} Thlx) dx".
O a=1
The local bulk fluid temperature is obtained by a heat balance,

X

1(x) = 1 — 4o | 75(x) dx".
0

(7)

ity
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The local Nusselt number is then

_ 2RQ(x) 9
Nux) = 15 — o] To ®)
Nu(x) = 259 (10)

— ) 3 CR exp [~ B2x — x)] dY’
0 n=1

Equations (7) and (10) are the formal solutions to the problem. Unfortunately, the unknown, 7,,(x),
is not only implicit in equation (7) but is also nonlinear. No exact explicit solution has been found.
An approximate explicit solution can be obtained by linearization of the fourth-order term,

d 4
x4 r*)[a%] . (11)

Substituting into equation (7),
) =1+0af3t{4— 3 CRB exp[~fx — x)]} dv’
0 n=1
—a {4 {a— ¥ CRE exp[—Bix — X)]} ) dx. (12)
0 n=1

Equation (12) is an integral equation of Volterra’s second kind and can be solved in terms of the
Liouville-Neumann series [6]:

2,(%) = f(x) + 4 g

e

AK ;i y(x, X)f(x') dx’ (13)

-
]

i=0

where,

s

f(x) = 1 + 12atix — 3ats ¥ C,R(1 — exp [—B2x])
n=1

A= —datd

Kilox) =4 = 3. CRBE oxp [~ fi(x = )] B

x x

Kiii(x, X)) = g (_! e (_E Ki(x,y)) Ki(ys, y2) - . - Ki(yi, x') dy, dy, ... dy;

Equation (13) is an approximate solution for the to be a constant at some mean value. Thus for
longitudinal temperature profile at the wall, the jth increment, let z,,; = mean value of t,, be-
which may be substituted into equation (10) to  tween x; and x;_;. Then
calculate local Nusselt numbers.
X [
NUMERICAL SOLUTION x‘! 1 n; C.R, B} exp [ —Bi(x — x)] ta(x) dx’

To obtain more exact results, equation (7) was ©
also solved by an iterative numerical procedure = 1, 3 C,R, {exp [—fi(x — x;)]
with the aid of an IBM 7094 computer. In a n=1
small enough increment of x, t,(x) may be taken — exp [—B3x — Jy (15)
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and equation (7) can be written as
X)) = ]
- j T(x) {4 — i C.RB2 .
exp [—Balx — x)]} dx’
r (16)

— dd(x; — x;_4) Th;
+ ot Y C,R,
n=1

{1 —exp [-ﬁf(xj - xj—l)]}'J

Starting with 7,(x; = 0) = 1, equation (16) was
used in an iterative procedure to calculate
Tu(X1), Tu{X2), . . . and so forth. Usually, 7,(x;) for
any specific x; converged in less than ten itera-
tions. The size of the incremental x was varied
until further subdivisions caused negligible
change in the results. It was found that the
greater the value of the parameter, «, the more
subdivisions were required for convergence, In
above equations, §,, R,, and C, are eigenvalues,
eigenfunctions (at r = R), and eigenconstants,
respectively, for the constant heat flux problem.
The numerical values for these quantities up to
n = 7 are given in reference [2]. Reference [7]
gives values up to n = 20 and presents asymp-
totic expressions for higher numbers. It was dis-
covered that seven eigenvalues did not give
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F1G. 1. Variation of local heat flux.

sufficient accuracy at x < 0-002. Fifty eigen-
values were used in the final computations.

Results were obtained for « ranging from 0-1
to 50. Once the longitudinal wall temperature
profile, 7,(x), is determined, the variation in
local wall heat flux can be calculated by equation
(3). Some sample results are shown in Fig. 1. It is
seen that heat flux decreases rapidly in the initial
lengths, the decrease becoming more gradual
and almost linear with x at greater distances. At
high values of o, the heat flux is substantially
reduced in very short distances. Thus for « = 1,
at x = 0-01, the heat flux has decreased to 49 per
cent of its initial value.

Table 1. Nu for laminar flow with radiant boundary condition

Local Nusselt numbers

VA

RePrR a =01 a=02 a=05 a=1 o =2 a=3S5 a =10 a =20 a = 50
0001 157 15-6 15-3 151 14-8 143 14:0 13-8 135
0002 124 12-3 121 119 117 11-3 11-0 109 10-7
0004 9-89 9-80 9-60 9-41 9-20 890 873 8-60 845
0-007 825 817 800 7-82 7-64 7-40 729 7-16 7-04
001 739 731 7-14 6-99 6-81 6-60 6-46 6-38 6-28
0-02 6-04 597 581 567 5-54 539 529 522 514
004 509 502 4-88 477 466 4-54 447 441 4-35
007 4-59 4-53 441 431 423 413 407 402 397
01 441 434 423 415 407 3-99 394 390 3-86
02 427 422 414 407 401 394 390 3-86 3-81

¢ T3R

k
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F1G. 4. Comparison of the empirical equation with numerical solution.

Local Nusselt numbers were calculated by
equation (10) and are tabulated in Table 1.
Figure 2 shows curves of the entrance region
Nusselt numbers for three values of «. The curve
for the constant heat flux case was recalculated,
using 50 eigenconstants, and is shown here for
comparison. It is evident that the radiant heat
flux case has lower Nusselt numbers than the
constant heat flux case. The difference is shown
in Fig. 3 where the per cent decrease, relative to
the constant heat flux case, is plotted as a func-
tion of the parameter «. For 01 < o < 50, the
difference ranges from 2 per cent to 17 per cent.

Inasmuch as these results are universal with
just one independent variable, x = (Z/R Re Pr),
and one parameter, @ = (e T3R/k), Table 1 and
Fig. 2 may be used with interpolation for any
case of interest. Figure 5 compares some approxi-
mate results calculated from equation (13} with
the exact numerical results. The wall temperature

is plotted as a function of axial position for two
values of o (0-2 and 0-5). Two terms (i = 0, 1) were
used in the Liouville-Neumann series for this
calculation. For the range of variables shown,
maximum deviation is 2 per cent,

e /B

e NUMERICAL SOLUTION
e APPROX, LINEARIZED SOLUTION,
v, =085
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F1c. 5. Comparison of approximate and numeri-
cal solutions.
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EMPIRICAL CORRELATION

It was found that the results of the numerical
solution could be well correlated by the follow-
ing equation

Nu(e, x) = (@ — bln o) Nuy(x) (17

where Nuyx) = Nusselt number for constant
heat flux case
2

3+ Y C.R,exp(—Blx)
n=1

The constants were empirically determined to be
a = 0928; b= 0023

Figure 4 compares Nusselt numbers calculated
by this equation with the Nusselt numbers ob-
tained from the numerical solution. In the range
of 0:002 < x < 0-2 and for a < 20, agreement is
better than +2 per cent. This equation is con-
venient to use and sufficiently accurate for most
applications.

SUMMARY

The problem of laminar heat transfer in a
tube with the nonlinear radiant-flux boundary
condition was analysed and an approximate
solution presented in terms of the Liouville-
Neumann series. Exact numerical solutions were

also obtained for a wide range of the parameter,
a = (eo6T3R/k). Results for the local Nusselt
number are presented in tabular and graphical
forms. An empirical equation is also given which
permits rapid estimation of the local Nusselt
number within an accuracy of 2 per cent for any
a < 20.
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Résumé—Le probleme du refroidissement par rayonnement d’un fluide en écoulement laminaire dans un
tube a été décrit par une équation intégrale non linéaire, et une solution approchée a été obtenue sous la
forme d’une série de Liouville-Neumann. On a obtenu aussi des résultats par une solution numérique
exacte par itération. Les nombres de Nusselt locaux sont présentés comme fonctions de la distance sans
dimensions, x = Z/Re Pr R, et d’un paramétre sans dimensions, & = e T3/k. Une équation empirique

Nu(a, x) = (0,928 — 0,023 In a(Nu,(x)

ol Nu, = nombre de Nusselt pour le cas du flux de chaleur constant, donne des résultats avec une précision
de +2 pour cent dans les gammes de variables intéressantes.

Zusammenfassung—Es wird das Problem der Kiihlung einer laminar durch ein Rohr strémenden Fliissig-
keit durch Temperaturstrahlung beschrieben mit Hilfe einer nichtlinearen Integralgleichung und einer
Niaherungsldsung in Form einer Liouville-Neumann Reihe. Ergebnisse wurden auch durch eine exakte
iterative numerische Losung erhalten. Ortliche Nusseltzahlen sind als Funktion des dimensionslosen
Abstands x = Z/Re PF R und eines dimensionslosen Parameters « = ¢ T3/k angegeben. Eine empirische

Gleichung

Nu(a, x) = (0,928 — 0,023 In o) Nu(x)

mit Nu, = Nusseltzahl fiir konstanten Wirmefluss, liefert Ergebnisse die innerhalb +2 Prozent im Bereich
der interessierenden Variablen genau sind.

2F
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AHHOTAONA-—3a]]a9a JIyYNCTOr0 OXJAKAEHWA MKUAKOCTH NPHU JTAMIHAPDHOM TeueHHH B TpyGe
ONMCHBAETCA HEJMHeWHHM MHTETPalbEuIM ypaBHeHueM. Ilonydeno nmpubimienHoe pemleHune
B BuAe pAAoB Jnysmmia-Heitmana, a Takse ¢ MOMOHIBI0 TOYHOTO MTEPAUMOHHOTO YMCJICH-
Horo pemenus. Jlokalbuee 3HaueHnsa kpurepus Hyccenbra mpefcraBieHH Kak GyHKuuMA
Gespasmeproro paccrosuus, x = Z[/RePrR, u Gespasmepnoro mapamerpa a = esTo3/k.

Nu(a,x) = (0,928 — 0,023 In a) Nuy(x),
HaitgeHo, 4To BMIMpUYECKOe ypaBHEHUe

rie Nug = kpurtepuit Hyccensra B ciiy4ae nMOCTOAHHOrO TEIJIOBOTO IOTOKA, [aeT peaybTaTh
¢ TOYHOCTBIO [0 2% Ad Tpe6yeMBIX IMANAa30HOB IIepeMeHHHX.



