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LAMINAR HEAT TRANSFER l[N TUBE WITH NONLINEAR 

RADIANT HEAT-FLUX BOUNDARY CONDITIONS 
JOHN C. CHEN 

Brookhaven National Laboratory, Upton, New York 

Abstract-The problem of radiant cooling of a fluid in laminar flow through a tube was described by a 
nonlinear integral equation, and an approximate solution obtained in terms of the L~o~vii~~Neumano 
series. Results were aIso obtained by an exact iterative numerical solution. Local NusseIt numbers are 
presented as a function of dimensionless distance. x = Z/Re fr R, and a dimensionless parameter, a = 
eaT$/k. An empirical equation, 

Nu(cr, x) = (0.928 - 0.023 In a)Nu,(x) 

where Nu, = Nusselt number for the constant heat flux case, was found to give results accurate to within 
f 2 per cent for the ranges of variables of interest. 

NOMENCLATURE 

empirical constants in equation (17) ; 

eigenconstants for constant heat-flux 
problem ; 
thermal condu~i~ity of fluid ; 
Nusselt number ; 
P&let number ; 
Prandtl number; 
heatfluxatr = R; 
radius of tube ; 
Reynolds number ; 
eigenfunctions for constant heat flux 
problem, at r = R ; 
radial coordinate; 
absolute temperature; 
velocity at tube center line ; 
dimensionless distance, = Z/(&z Pr R) ; 
~on~tudi~a~ coordinate. 

Greek symbols 

a, dimensionless parameter ~~~~~/~ ; 

B iv eigenvalues for constant heat-flux prob- 
lem ; 

fs emissivity of tube wall ; 

P9 density of fiuid ; 

t This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 
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Q, Stefan-Boltzmann constant; 

z, dimensionless temperatures = T/T,. 

Subscripts 

b, fluid bulk ; 

4 at entrance (2 = 0); 

47 constant heat flux case; 

w, at wall (r = R) ; 
* , arbitrary base temperature for equa- 

tion (12). 

INTRODUCTION 

THE PRoBLEMof heat transfer with laminar flow 
in a tube has long been of interest to investigators 
and a number of solutions have been published 
dealing with a variety crf boundary conditions. 
Those solutions which involve prescribed tem- 
perature bounda~ conditions were well re- 
viewed by Tribus and Klein Cl]. Solutions which 
involve prescribed heat-flux boundary condi- 
tions include the atoll-known work of Siegel, 
Sparrow, and Hallman [Z]. A third class of 
problems, in which neither the wall temperature 
nor the wall heat flux is prescribed per se but 
instead the heat flux is prescribed as a function of 
the local wall temperature, has received much 
less attention. This is a more difficult problem in 
that the heat-transfer equation now involves the 
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unknown variable (either temperature or heat 
flux) in an implicit rather than explicit form. 
Sideman et nl. [3] and Stein [4] recently treated 
problems of this class. Of special interest is the 
problem of radiant cooling at the boundary wall, 
where the wall heat flux is proportional to the 
fourth power of the local wall temperature. This 
problem has become increasingly important with 
the advent of such high temperature systems as 
radiators in space power systems, high tem- 
perature liquid metal facilities, and high temper- 
ature gas flow systems. No analytical or 
numerical solution for this problem has been 
published to date. 

ANALYSIS AND APPROXIMATE SOLUTION 

Consider a flurd with constant physical pro- 
perties in non-dissipative, laminar flow through 
a round tube of radius R. Heat transfer at the 
wall starts at axial position 2 = 0 and is pro- 
portional to T:(Z) for Z > 0. It is assumed that 
axial conduction is negligible and that at Z = 0, 

the fluid enters with a fully established laminar 
velocity profile and with a uniform temperature, 
‘I& The governing heat-transfer equation for 
Z > 0 is then 

,,i..[* -(jR)2]g=k[g+;g] (1) 

and the initial and boundary conditions are 

For Z d 0, T = T, 

ForZ>O k g , , [I ar ,=R 
= Q(z) 

= --MT:,(Z) (3) 

0. (4) 

Since equation (1) is linear, the solution can be 
obtained by superposition of the constant heat 
flux solution for in~nitesimal changes in heat 
flux. The effect of a step increase in heat flux at 
Z’ of magnitude Q(Z) is known to be [2] : 

$I$+ 
4(z - z’) 

Re PrR 
+ jl C,R, exp [-I$ feiry]br). (5) 

Applying Duhamel’s superposition theorem [S) to obtain the solution for the case of a constantly 
changing heat flux, 

Combining with boundary condition (3) and writing in terms of dimensionless variables, 

r,(x) = 1 - c1 i (4 - g C,R& exp [ -j?z(x - x’)]j rz(x’) dx’. 
0 II=1 

The local bulk fluid temperature is obtained by a heat balance,, 

7&x) = 1 - 4a i r$(x’) dx’. 
0 

(7) 

(8) 
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The local Nusselt number is then 

2RQM 
N”(x) = l&(x) - z,(x)] To 

(9) 

Nu(x) = 
2ew 

- 1 z3x’) “2, G,R& exp [- S,‘Cx - 4 dx” 
(10) 

Equations (7) and (10) are the formal solutions to the problem. Unfortunately, the unknown, z,(x), 
is not only implicit in equation (7) but is also nonlinear. No exact explicit solution has been found. 

An approximate explicit solution can be obtained by linearization of the fourth-order term, 

Substituting into equation (7), 

L(x) = 1 + a 1 32: (4 - .zl C,R& exp [-/3:(x - x’)]} dx’ 

(11) 

C,R,/?z exp [ -S.‘(x - x’)]J 7,(x’) dx’. (12) 

Equation (12) is an integral equation of Volterra’s second kind and can be solved in terms of the 
Liouville-Neumann series [6] : 

rw(X) = f(X) + A 6 ire l’Ki+ I(% X’)f(X’) dx’ 

where, 

f(x) = 1 + 12ar4,x - 3ar4, “gl C,R,(l - exp [-8,2x]) 

Ki+i(x, x’) = i f o o . . . $ KI(%YI) KI(YI, Yz) . . . K,(Yi> X’) dY, dY, . . . dYi 

(13) 

Equation (13) is an approximate solution for the to be a constant at some mean value. Thus for 
longitudinal temperature profile at the wall, thejth increment, let rJ - mean value of z, be- 
which may be substituted into equation (10) to tween Xi and Xi- 1. Then 
calculate local Nusselt numbers. 

NUMERICAL SOLUTION 7 f C,R& exp [ - /Iz(x - x’)] z:(x’) dx’ 
Xi-1 n=l 

To obtain more exact results, equation (7) was 
also solved by an iterative numerical procedure 
with the aid of an IBM 7094 computer. In a 

= r$ $r GR, {exP [ - %(x - xj)] 

small enough increment of x, r,(x) may be taken - exp [-/I.“(x - ,I> (15) 
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and equation (7) can be written as 

Tw(xj) = 

Xj-I 

1 - a d TV (4 - f CJJI.2 . 

n=l 

exp [ - j?,‘(x - x’)]} dx’ 

- 4d(Xj - Xj- 1) Z~j (16) 

(1 - exp [-P,'txj - xj-l)]}.J 

Starting with T,(Xj = 0) = 1, equation (16) was 
used in an iterative procedure to calculate 

r&1), r,(x,), . . * and SO forth. Usually, Z,(Xj) for 
any specific Xi converged in less than ten itera- 
tions. The size of the incremental x was varied 
until further subdivisions caused negligible 
change in the results. It was found that the 
greater the value of the parameter, a, the more 
subdivisions were required for convergence. In 
above equations, &, R,, and C, are eigenvalues, 
eigenfunctions (at I = R), and eigenconstants, 
respectively, for the constant heat flux problem. 
The numerical values for these quantities up to 
n = 7 are given in reference [2]. Reference [7] 
gives values up to n = 20 and presents asymp- 
totic expressions for higher numbers. It was dis- 
covered that seven eigenvalues did not give 

0 .Ol .02 .03 .04 .05 .06 .07 .08 .09 .,o .I I ,I2 

x=x$-&q 

FIG. 1. Variation of local heat flux. 

sufficient accuracy at x < OW2. Fifty eigen- 
values were used in the final computations. 

Results were obtained for a ranging from O-1 
to 50. Once the longitudinal wall temperature 
profile, r,(x), is determined, the variation in 
local wall heat flux can be calculated by equation 
(3). Some sample results are shown in Fig. 1. It is 
seen that heat flux decreases rapidly in the initial 
lengths, the decrease becoming more gradual 
and almost linear with x at greater distances. At 
high values of a, the heat flux is substantially 
reduced in very short distances. Thus for a = 1, 
at x = 0.01, the heat flux has decreased to 49 per 
cent of its initial value. 

Table 1. Nu for laminarflow with radiant boundary condition 

Local Nusselt numbers 
Z 

RePrR 
a = 0.1 GI = 0.2 a = 0.5 a=1 a=2 a=5 a = 10 a = 20 a = 50 

0001 15.7 15.6 15.3 15.1 14.8 14.3 14.0 13.8 13.5 
0.002 12.4 12.3 12.1 11.9 11.7 11.3 11.0 10.9 10.7 
OGO4 9.89 9.80 9.60 9.41 9.20 8.90 8.73 8.60 8.45 
OQO7 8.25 8.17 8.00 7.82 7.64 740 7.29 7.16 7.04 
0.01 7.39 7.31 7.14 6.99 6.81 660 6.46 6.38 6.28 
0.02 6.04 5.97 5.81 5.67 5.54 5.39 5.29 5.22 5.14 
OG4 5.09 5.02 4.88 4.77 4.66 4.54 4.47 4.41 4-35 
@07 4.59 4.53 4.41 4.3 1 4.23 4.13 4.07 4.02 3.97 
0.1 4.41 4.34 4.23 4.15 4.07 3.99 3.94 3.90 3.86 
0.2 4.27 4.22 4.14 4.07 4.01 3.94 3.90 3.86 3.81 
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FIG. 2. Local Nusselt numbers. 
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Nu, FROM NUMERICAL SOLUTION 

FIG. 4. Comparison of the empirical equation with numerical solution. 

Local Nusselt numbers were calculated by 
equation (IQ) and are tabulated in Table 1. 
Figure 2 shows curves of the entrance region 
Nusselt numbers for three values af g. The curve 
for the constant heat flux case was recalculated, 
using 50 eigenconstants, and is shown here for 
comparison. it is evident that the radiant heat 
flux case has lower Nusselt numbers than the 
constant heat flux case. The difference is shown 
in Fig. 3 where the per cent decrease, relative to 
the constant heat flux case, is plotted as a func- 
tion of the parameter a: For 0.1 d a 6 50, the 
difference ranges from 2 per cent to 17 per cent. 

Inasmuch as these results are universal with 
just one independent variable, x = (Z/R Re Pr), 
and one parameter, tt = ~~~~~~/~), Table i and 
Fig. 2 may be used with inte~oiation for any 
case of interest. Figure 5 compares some approxi- 
mate results calculated from equation (13) with 
the exact numerical results. The wall temperature 

is plotted as a function of axial position for two 
values of a (@2 and 0.5). Two terms (i = 0, 1) were 
used in the Liouville-Neumann series for this 
calculation. For the range of variables shown, 
maximum deviation is 2 per cent. 

I I I I 

a =0.2 

a=# 1 i 

tf J I 
b O-7 I- -NUMERICAL SOLUTION 

. APPROX. LINEARIZED SOLUTION, 

06 
r**cbe5 

A APPROX. LINEARIZED SOLUTION, 
r.* 0*75 i t I I I I f I I 

0 O-01 0’02 @OS 0.04 0’05 @OB 0.07 cm% 

x=z/Re.Pr. R 

FIG. 5. Comparison of approximate and numeri- 
cal solutions. 
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EMPIRICAL CORRELATION 

It was found that the results of the numerical 
solution could be well correlated by the follow- 
ing equation 

Nu(cc, x) = (a - b In a) iVu,(x) 

where Nu,(x) = Nusselt number for 
heat flux case 

(17) 

constant 

The constants were empirically determined to bl 

a = 0.928; b = 0.023. 

Figure 4 compares Nusselt numbers calculated 
by this equation with the Nusselt numbers ob- 
tained from the numerical solution. In the range 
of 0+002 < x < 0.2 and for a < 20, agreement is 
better than k2 per cent. This equation is con- 
venient to use and sufficiently accurate for most 
applications. 

SUMMARY 

The problem of laminar heat transfer in a 
tube with the nonlinear radiant-flux boundary 
condition was analysed and an approximate 
solution presented in terms of the Liouville- 
Neumann series. Exact numerical solutions were 

also obtained for a wide range of the parameter, 
a = (mTaR/k). Results for the local Nusselt 
number are presented in tabular and graphical 
forms. An empirical equation is also given which 
permits rapid estimation of the local Nusselt 
number within an accuracy of 2 per cent for any 
a < 20. 
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R&un&Le probleme du refroidissement par rayonnement d’un fluide en &oulement laminaire dans un 
tube a CtB decrit par une tquation intlgrale non linkaire, et une solution approch&e a ttC obtenue sous la 
forme d’une sCrie de Liouville-Neumann. On a obtenu aussi des rCsultats par une solution numtrique 
exacte par ittration. Les nombres de Nusselt locaux sont p&sent&s comme fonctions de la distance sans 
dimensions, x = Z/Re Pr R, et d’un paramttre sans dimensions, a = tu Tzjk. Une tquation empirique : 

Nu(ct, x) = (0,928 - 0,023 In a(Nu,(x) 

oh Nu, = nombre de Nusselt pour le cas du flux de chaleur constant, donne des rCsultats avec une prCcision 
de f. 2 pour cent dans les gammes de variables intkressantes. 

Zuaammenf~-Es wird das Problem der Kiihlung einer laminar durch ein Rohr strBmenden Fliissig- 
keit durch Temperaturstrahlung beschrieben mit Hilfe einer nichtlinearen Integralgleichung und einer 
NBherungsllisung in Form einer Liouville-Neumann Reihe. Ergebnisse wurden such durch eine exakte 
iterative numerische Liisung erhalten. &tliche Nusseltzahlen sind als Funktion des dimensionslosen 
Abstands x = Z/Re Pf R und eines dimensionslosen Parameters a = tu T$k angegeben. Eine empirische 
Gleichung 

Nu(a, x) = (0,928 - 0,023 In a) Nu,(x) 

mit Nu, = Nusseltzahl fiir konstanten Wlrmefluss, liefert Ergebnisse die innerhalb +2 Prozent im Bereich 
der interessierenden Variablen genau sind. 

2F 
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AmoTaqwJr-3a~a=Ia JIyWCTOrO OXJlamReHElR RUIJJKOCTU lIpPI JlaMHHapHOM TeqeHIlM B Tpy6e 
OIIHCbIBaeTCR HeJIHHetHbIM HHTerpaJlbHblM YpaBHeHHeM. nOJIyseH0 npki6nHFKeHHOe peILleHHe 
B BHfie pIiAOB ~HyBllJIJIFI-HetiMaHa, a TaKH(e C nOMOubl0 TO'lHOrO HTeparlUOHHOrO 'IUCJIeH- 
HOrO peUleHIUi. jIOKaJrbHJ,Xe 3Ha9eHIIR KpHTepVlR HyCCeJIbTa IIpefiCTaBJIeHId KaK $yHKqHH 

6e3pa3MepHOrO paccTofmwI, x = Z/RePrR, M 6e3pa3MepHOrO IIapaMeTpa a = toTo3/k. 

Nu(a,x) = (0,928 - 0,023 In a) Ah,(x), 

HatiAeHO, YTO 3MIIkipkIYeCKOe YpaBHeHHe 
rge Nu, = KpHTepHt HyCCeJIbTaB CJIysae ItOCTORHHOrO TeITJIOBOrO IIOTOKa, AaeT pe3J'JIbTaTE.I 

C T04HOCTbIO A0 12% AJIH Tpe6yeMbIXAHaIIa3OHOB IIepeMeHHbIX. 


